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SECTION 1. GENERAL. DESCRIPTION

1.1 INTRODUCTION

Present methods for predicting internal wave fields produced by
objects moving in stratified media are limited in their physical realism,
flexibility, and economy. Recent efforts to define standards for internal-
wave prediction have helped to clarify the shortcomings of existing

techniques, which occur in one or more of the fcllowing aveas:

o Modelling the dynamics of turbulent wake ;.owth, buoyancy trans-

port, and wake collapse.

@ Modelling the propagation of radiated internal waves in a medium

of arbltrary buoyancy stratificationm.

® Maintaining numerical precision and stability in a field calcula-~
tion encompassing a wide range of horizontal and vertical length

scales, at acceptable computing cost and speed,

Some of these shortcomings are fundamental and unavoidable, while
some are accldental, depending on the approach used. For example, a
three-dimensional finite-difference calculation, superior for near-field
flow and wake dynamics, is severely limited in the upper length and time
scales it can achieve, simply because of limits omn available computer
storage, speed, and accuracy. On the other hand, limitations in existing
analytic approaches can be overcome. One such approach now in use by
TRW employs a three-layer model of density stratification that is too
simplified to reproduce wave propagation on real thermoclines, although
it is perfectly adequate for its original purpose, which was to provide
estimates of field magnitudes and shapes ([2].




A more general analytic ccde can be -envisioned, one: based on a
Fourier/normal-~mode expansion of the linearized field equations for an
arbitrary profile of stratified buoyancy, that would meet the require-
ments for generality, scale and efficiency. Like its predecessors,
however, such a code would have to depend on parametric source models to
represent the excitation of internal waves by the moving body and col-
lapsing wake, source models that will have to be devised and validated

elsewhere.

A two-fold approach has been suggested (3] ia vhich an efficient code
of the analytic type is developed for routine simulations, ‘while at the
same time a ‘'research" code of the finite-difference type is developed

to provide validated source models for the analytic code.

This two-volume report describes a .prototype analytic code, XMODE,
which has been developed at RDA to provide inerpensive simulations of
radiated internal-wave flelds in a variety of,reaiistic thermoclines,
XMODE represents an improvement over existing codes in two important
respects: it contains an efficient eigenfunction generafor for the normal-
mode: analysis of an arbitrary input density profile, and it abandons the
stationary-phase method of field calculation in favor of a more nearly
exact, and very rapid, inversion in rectangular coordinates via the Fast

Fourier Transform [4].

Volume I contains a general description of XMODE and a detailed
derivation of the algorithm for representative body and wake sources.

Volume II is a user's guide to XMODE, containing a description of the

computer routines, operating instructions; and FORTRAN listings.
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Some of the. procedures and computer subroutines, those having to
do with eigenfunction generation, are identical to those in the computer
code ZMODE, which is an integral part of XMODE and which has been described
fully in an earlier report [1]. This material is not duplicated here;
potential users of XMODE thould obtain Referemce 1 as a companion

volume to the present report.

1.2 OQUTLINE OF METHOD

The algorithm used by XMODE is based on a Fourier/normal-mode
expansion of the linearized equatiomns of stratified flow, with simple
local sources. As in other formulations the transformed solution is
obtained as an algebraic combination of eigenfunction amplitudes and
dispersion quantities., However, the present formulation is distinct
in that the transform is inverted in rectangular coordinates, first along
the x-direction (track) by analytic means, then along the y-direction
(crosstrack) by a numerical Fast Fourier Transform (FFT). The partial
crosstrack transforms obtained in the first step for each normal mode
are complex functions whose amplitudes are invariant with respcet to
x and whose complex phases are linearly propertional to x. This property
allows the partial transforms to oe assembled rapidly from independent
amplitude and phase factors computed and stored ahead of time. At each
value of x the numerical phase~and~sum operaticn is, for twenty modes,
no more time-consuming than the FFT computation of the crosstrack field,
so that the full efficiency of the FFT is realized.

1.3 ADVANTAGES AND LIMITATIONS

The logic of XMODE is designed for efficirent computatlon of radiated
internal wave field properties at the ocean surface, or on a horizontal
plane (x-y) at any specified depth. Computation of the field on the ver-
tical crossplane (y-z) is somewhat lees efficient, and computaticn on a

vertical plane (x~z) is least efficient of all. All polats in the plane

T, AR st < INRTEN,
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are computed with equal precision; unlike previously used stationary-
phase methods, the FFT in rectangular coordinates has no difficulty with
points on -or near the coordinate axes (x = 0 and y = 0) originating on

the .dource.,
Other specific assudptions and features are:

@ Linearized fluid equations with dipole body and quadrupole wake

sources.,

@ Cholce of fileld quantity among vertical displacement, scalar
strain; x~ and y~ components of velnc¢ity, and scalar strain
rate.

@ No ambient shear flow.

‘¢ Mo vertical momentum in wake.

® Source speed must exceed maximum ambient phase speed (Super-

Froude source).
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SECTION 2. SPECIVICATIONS OF THE XMODE CODE AND
SAMPLE CALCULATICNS

[
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2.1 RESOLUTION AND DYNAMIC RANGE

Each crosstrack field contains 256 physical resolution elements Ay,
. fieid half-width = 256 « Ay;

the width and resolution size are somewhat adjustable, but Ay, which should

approximate the reciprocal of the upper wavenumber limit in the ZMODE cal-

,_
P

culation, is constrained by numerical stability considerations to

Ay Za/IS ,

Pypp—

where Za is the total depth of the active thermccline., For za = 300 m
this permits a crosstrack resolution of 20 m and a field half-width of
5120 m. The number of points calculated per crosstrack field is optional
among 2536, 512, 1024, and 2048, for redundant sampling at multiples of

2, 4, and 8 times the Nyquist frequency Ay—l.

Any number of equally-spaced crosstrack fields can be requested in

a given calculation, with an -arbiirary track spacing 4X.

The maximum number of normal medes is 20, so that the effective

vertical resolution is AZ = ZF/ZO.

Since the source transforms are generated directly from analytic

. formulas and stored in floating-point format the effective dynamic range

of the tabulated transforms is very large, limited only by the eigenmode
convergence precision of ZMODE, which is in the neighborhood of 10"20.

or double the eigenvalue cr .vergence precision,

»
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Errors intrdduced by the finite, discrete FFT are of two simple types:
accumulated roundoff, which is a few times machine precision, and aliasing,
which superposes fields from image sources spaced av aultiples of the field
width from che actual track. The image fields are negligible so long as
the simulation time is short co- ared to the time required for the fastest
propagating field components to traverse a half~width; when this artificial
periodicity is taken into account, the images will not affect estimates of the

spectral content, which can be recovered with a precision of 10—13.

2.2 CORE REQUIREMENTS AND EXECUTION TIMES

Tt XMODE source deck contains 1120 cards. On the CDC 7600, both
the RUN compiler and the FIN optimizing compiler produce an object code
occupying less than 60,000 worde (162,000 octal). i

The execution tim:s are proportional to the number of modes requested

in a calculaticn. The values listed below are for the full 20 modes.

Execution Times, Seconds

Procedure Module RUN FIN

¢ Dispersion Tables ZMODE 11.2 6.6 ;
and Mode Amplitudes

® Recalculate with ZMODE 4,1 2.5 g
new Source Depth '

® Crogstrack Source SOURCE 0.02 0.01 ;
Transforms

@ With Printer Plots SOURCE 0.30 0.38 y

o Radiated field on XFIELD 6.4 5.3 }
100(x) by 1024(y)
array :

it i ®
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- Particularly noteworthy is the efficiency achieved by the XFIELD
module. Of the 64 milliseconds computation time per 1024-point crosstrack
field (RUN compiler), half is devoted to the 20-mode phase-and-sum, and
half to the FFT,

The computation time of the dispersion tables, the most time-consuming
operation, will depend also on the chosen number of eigaenmode integration
s steps, the convergence precision, and tabular wavenumber density; the values
. 200, 10-10, and 41 used in the test case are felt to be typical for deep-
ocean calculations. For a series of field calculations with differing source
speed or field type, a single dispersion calculation suffices. A change in
source or field depth requires a new calculation of .ne eigenfunctions so
that the mode amplitudes at the new depths can be tabulated. When converged
eigenvalues are already present the eigenvalue search can be bypassed,

shortening the (RUN) time from 11.2 to 4.l seconds, as indicated.

2.3 SAMPLE CALCULATIONS

The sample calculations illustrated below simulate a source 60 meters
deep moving at 2,0 kt and 16 kt. The depth chosen places the source
- 15 meters below the sharply ercded boundary of the test thermocline,
shown in Figure 2-1, which has been taken from data obtained on the
oceanographic research vessel FLIP, The corresponding profile of Vailsala
L frequency and the ZMODE-derived internal wave dispersion plot are shown
in Figures 2-2 and 2-3.

G e #

The crosstrack source transforms cumpuied by the SOURCE module are

—d

avallable in numerical and graphical output. I.gure 2-4 is a sample of the

numerical cutput, which includes transform amplitude versus both the scalar

"R
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wavenumber, k, and its crosstrack component, ky. The graphical output,

Figures 2-5 and 2-6, plots the squared transform amplitude against ky.
These two examples show the modal energy spectra of crosstrack surface
current {ior the first six modes at 2.0 kt and 16.0 kt respectively. For
greater clarity, the usual XMODE printer-plot subroutine has been replaced
by an equivzlent pen-plot routine specific to the RDA plotting hardware.
The low-speed and high-speed cases are dominated respectively by body

and wake excitation; note the flat spectra characteristic of the latter
and peaked spectra of the former, especially in the first mode, whexe the
low-wavenumber components, whose phase speed is about 1.6 kt, are nearly

resonant at 2.0 kt.

The output of the field calculation in XFIELD is placed directly on
magnetic tape. At the sa.e time XFIELD generates & summary printout, as
in Figure 2-7, containing the peak amplitude and corresponding location
for each crossfield. The boundary amplitudes are useful at short simu-

lation times as an indication of the transform roundoff and aliasing errors.

Figures 2-8 and 2-9 are raster plots made directly from the sample
cailculation output tape, depicting crosstrack surface current associated
with the radiated internal waves in modes 1-20, Plot ranges of 0-2.0 km and
0-750 m crosstrack are used for the 2.0 kt and 16.0 kt cases, respectively,
or 40% and 15% of the calculated field, for best rendering of the features.
The downtrack coordinate is in time units, for both cases spanning

5000 sec in increments of 50 sec.
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x4k FIELD DUTPUT SUMXARY #an -
gg ‘ h N
- « QUANTITY vy o
‘ « SPEED, KT 16,00 N
* DEPTH, M 60,0 =
i * XMAXSWIDTH 208 =
B
TIME, $SEC TRACK, M PEAK STGNAL AT ¥, M BOJNDARY
b 50,0 41,5 1 137E=04 30,0 1,806Ew10
L3 100,0 623,14 {,292E=04 30,0 1.381E10
180,0 1234,6 1.196En04 35,0 1,211E=10
. 2000 16U6,2 1,022E=00 4%5,0 1,289E~10
b 250,0 2057,7 S,696E05 60,0 1,601E=10
I8 300,0 2069,3 1, 1U4E=yl 90,0 2,116E10
350,0 2880,8 1,337Ew0U 95,0 2,787Ew10
. 400,0 3292,4 1,UBBEOU 98,0 3,5U5Ew10
1y 450,0 3703,9 1 S6UEROU 95,0 4,307Ee16
i 500,0 4115,4 §,580Ew0U 100,0 4,986Eei0
550,0 4527.0 1,527Em0U 100,0 5,502Ew10
600,0 4938,5 1, 4&SEmOL 105,06 5,738Ev10
{4 650,06 5350, 1,293E04 105,0 S,792Ee$0
D 700,0 576146 1 tu3E=0U 110,0 S, UTUEs10
- 750,0 6173,2 9,915E205 110,0 U TRUEw10
800,0 6584,7 B UUIERDS 115,0 3,710Ee10
: 850,0 6996 2 7,747E=05 160,0 Z,1VUEwLD
. 9000 7407,8 7,267E<05 160,0 1.331Ee1
- 950,06 7819,3 $,906Ew08 220,0 2,462Ee10
~3 1056,0 86U2,4 8,370E"05 30,0 9,483Ee10
] 1100,0 90%4,0 1,129Ew00 30,0 1,388E«09
. 1150,0 9465,5 1 UULE=OU 35,0 1,894E«09
1200,0 9877.1 1,775€=04 40,0 2,463Ew09
\ 12%0,0 10288,8 R,099Ew04 45,0 3,090E=C9
{1 1300,0 10700, 1 2,36RE=0U 50,0 3,802E=08
T 13%0,0 1114147 2,553Ew04 50,0 4,581Ee09
1400,0 11523,2 2.683E=00 £5,0 5, 443809
1450,0 11934,8 2,712E=04 60,0 bo.334Ew00
i 1800,0 12366,3 2,656E000 60,0 7,4U2809
P 13500 12757,9 2,586E004 65,0 B.592E209
1600,0 13169,0 2,8UBEwQU 70,0 9.852E09
1650,0 13884,0 2,3108004 70,0 $4123E0048
i 1700,0 13992,5 2,159Em0U 70,0 1,273E%08
’i 1790,0 14404,0 2,043Em0u T0.0 1,433Ee08
¢ 1800,0 14018,6 $4991Em 04 15,0 1,6196008
18%0,0 182271 2,008Ew00 15,0 1,8182008
[ 1996,0 15636,7 2,066E=04 78,0 2,0602008
N 19%0,4 16080,2 2,1UUEw0u 86,0 2,280f008
ol 2000,0 16061 ,8 2,208Ew0U 80,9 2,562Ew08
20%0,0 16873,3 2,385Ee04 850 2,871¢e08
. 2100,0 172848 2,8568Re0y 90,0 3,218E.08
2260,0 18107,9 2,908Eu04 100,0 4,033Es08
22%0,0 18519,5 3,058Ea04 100,0 4,555€=08
2300,0 18931,0 3,2128e04 105,0 5,125E008
23%0,0 19542,6 3,282E000 110,0 5,771208
2400,0 18780, 1 3,34iEnCH 110,0 £,505808
2080,0 20465,7 3,383Ea0d 115,0 7.3352008
. 2500,90 20877,2 3,377E=04 115,90 3,274E008
Figure 2-7, Sample Summary Printout From XFIELD Module
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SECTICN 3, BODY-GENERATED WAVES

Internal waves are generated in an incompressible, siratified fluid
when a moving object displaces the level surfaces from equilibrium. If
the radiated displacement amplitudes are small, and “.f the traverse time
of the object is short compared to the time scale associated with strati-
fication, then the excited field is well describz! by linearized equations
with a simple set of singular displacement souvrces. The one approximation
that may be unrealistic for certain cases i3 the neglect of ambient cur-

rent shear.

The following normal-mode analysis of body-generated radiation is
similar to the general treatment of Miles [5]. Certain differences of format
are dictated by the rectangular coordinates chosen for ease of computation,

and these will be pointed out au they are introduced.

3.1 EQUATIONS OF MOTION

The coordinates nre x (track), y (cross-track), and z (depth, positive
upward, zero at surfare). The fluid displacement from equilibrium will be
described by a vertical compousnt § and a twe-component vector &€ in the
hovizontal plane. In the usual Boussinesq approximation with small dis-
placements and swall departures p from equilibrium pressure, the equations

of motion are

. 2-’3- +N% () ¢ =0 (3-1)
E4yop =0 (3-2)

where v° stands for -he horizontal gradient (8/3x%, 9/50y) and N is the

Vaisala frequency associated with the buoyancy stratification

Pe-88.
p dz (3-3)
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Conservation of volume will be modified to include a local set of socurces

and sinks describing the moving body,

3 ” .
§§-+ ViE = s(x-vt, y, 2) . 3-4)
To eliminate the pressure, we app’y 3/3z to (3-2), V” to (3-1i}, and subtract,

) ) .
vy + NVp - -g-% =0 3 (3-5)

we' can- then eliminate the £ term by taking the horizontal divergence of
n
(3-5) and adding the result of (3/9z) (8“/3t2) on (3-4),

, 2 \.
2 42 )1 4 N2y =
922

3.2 NORMAL MODE SOLUTION IN FOURIER- xXANSFORM COORDINATES

(3-6)

lo?
N :

Using the nota:ion (=) for the 2-dimensional Fourier transforms in

the horizontal plane

E'(ﬁ,z) = .5\e ileex r dxdy (3-7)

and so on, with k*'x = kxx + kyy , and observiang that every compoiicnt of
a steady solution emanating from the moving source (3-4) must have the

particular time dependence

T(k,2) e Lyt y w ® kv, (3-8)
we get from (3-6)
2
2r 2 3
2tk <;;f 1/C =9z (3-9)

where kz = ki +-k: and 8 is the transform of s at t = 0.
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At each value of k, the solution { to the inhomogeneous equation
above can be obtained as a linéar combination of the eigensolutions ¢

of the corresponding homogeneous equation

=0, m=0,1, 2, -.. (3~10)

vhich define the freely propagating normal modes. The functions 4>m
*
vanish at z = 0 and at z = b, the ocean bottom. They form a complete

orthogonal set,

. - -11)
¢ N9 dz =6, (3-11)
b

over the vertical interval in which N(z) is nonvanishing. In these

defining equations che scalar wavenumber is a continuous parameter upon
which the functions ¢m and the eigenvalues W depend, a convention opposite
to that of tliles' treatment, in which k is the eigenvalue and w the
parametexr. The present cheoice simplifies the logic of the numerical

algorithm.

We now proceed in the usual way to assemble the eigenfunctions”into

a Green's function Gk,w(z’zo) for (3-9),

2 2
2° 2N ] .
7 *Ek ( 2-l> G0 = 3 = 2, (3-12)

*
Coupled displacements of the free surface are very small and can be
safely neglected. See Phillips [6].

21




| ~
g
E
55; which in combination with the source transform 33732 will yield the

displacement transform T. The identity

K -
oy 2 ~ _ ~
‘%ﬁ 22 ¢m(2) ¢m(zo) N°(z) = 6(z zo) (3-13)
l‘i m=1
;gf and the property, via equation (3-10),
4
: , )
? 2 (X 22(1 1
[._.fm (% - )] bum 0 (£ 3)s,
3z w ) w
m
together imply
2 & e
Gk,w(z’zo)=""§' 2 ) ¢m<2> ¢m(zo). (3-14)
L™ R

To represent the effect of a cylindrically symmetric body we

distribute displacement sources along the submerged track z = £y ¥ = 0,

s(x,y,2) = A(x) 8(y) 8(z - zo);

the particular choilce

const., |x| < L/2
A(x) =
0, |x| > L/2

22
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is equivalent to the Rankine ovoid of volume V = AL and dipole length L
(except for the effects of local stratification and the rigid surface
in distorting the boundary streamlines). For this choice, the source

transform term in (3-9) is

55+ sin ka/2
—— —4 A — ' - L ad
az(k’z) N K12 §'(z - 2 ) (3-15)

where the prime (') is used here and subsequently to dencte differentia-
tion by z. For cases of practical interest the values of kx = wm/v

present in the radiated fieid will be such that

kL

X < NL <<
2 2v

so that the form factor will bte very nearly unity; note that this inequal-~
ity must hold also for the distortions in the Rankine ovoid boundary
streamlines to remain small. The body is therefore effectively a point
monopole for displacement (or point dipcle for velocity). The equation

for the displacement trangform then becomes

2 2
-"'?—2- + 1’;2 (L‘I,z_ - l) L=V &z ~-2z) (3-16)
0
9z w

so that ¢ is minus V times the derivative with respect to z of the

Green's function (3-14),
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— 2, W
TE,2) == > T 4,(2) 1) (3-17)
k— m=l W - wn

The subscripted terms in the above, N and ¢m’ depend on the scalar
magnitude of K, vhile w is identical to the track component ky except

for the scale factor v, w = kkv.

3.3 CROSSPLANE REPRESENTATION

The inversion of the field transform Z will be carried out in two
steps, first analytically along the k_ coordinate to produce the "partial

N
transforms" g,

N 1 [® -5 -1k, "t
t;(x,ky,z) = -?:;T-L/c; gk,z) e X dkx. (3-18)
then along the k.y axis

1 [

n, -ik
5(x,y,2) = ‘z?r'_m C(x,ky,z,) )

yy . 3"' 9
dky (3-19)

The second step is carried out numerically with the Fast rourier
Transform for a succession of x~values at a given z, As will be seen,
the analytic form of the partial transform 2 allows it to be assembled

rapidly at each x from quantities computed and stored ahead of time,
Each term in the modal sum (3-17) for the field transform contains

an integrable singularity along the line of resonance in the k plane
defined by

24
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kxv =0 k),
(3~20)

K = k2 + K,
x Ty

the finite contribution of these singularities to the inversion integrals
constitutes the radiated, freely propagating field. (Singularities occur
also along the lmaginary kx axls associated with solutions of the normal-
mode equation for negative kz. These constitute the nonradiated,
exponentially-damped field which is the generalization, for stratified
flow, of the local potential flow around the source.) Using c, te denote

the scalar phase speed wm/k, we note that

k k v !

which indicates that no waves for which n > v can be part of the field.
It can be shown that Cn is always a decreasing function of k, so that
the resonance loci have two possible forms, as shown in Figure 3-1:
when v > cm(k = 0) the source is "super-Froude" with respect to the mth
node and the locus leaves the origin at an angle of sinql(cm(O)/v);
when v < cm(d) the locus crosses the kx—axis at a finite value corre~
sponding to cm(kx) = v, giving rise to a transverse wave system, While
there is no distinction between these two cases in the formalism to
follow the inclusion of transverse waves complicates the numerical pro-
cedures, and the numerical algorithm has been configured for the super-

Froude case only.

To evaluate the radiated contributions we choose the complex integration
contour of (3-18) to lie below the real ky axis so that the field will
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MODE 1 SINGULARITY LOCI
FOR VARIOUS SOURCE SPEEDS

(n)z2L02-4

V= 0.5 M/SEC SUB- FROUDE

0.75 M/SEC

1.0 M/SEC SUPER- fROUDE

1.5 M/SEC

! n i ! T

|
4 5 6 71 8 9 10
K, (CYCLES/KM)

Figure 3-1. Solution Loci for the Resonance Equation {3-20)

at Yarious Source Speeds. Limiting Phase Speed for
Mode 1 {s 0.836 B Sec-1.
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vanish for x > 0, and we include the dependence of w on kx via k (at

fixed ky) in the computation of the residues,

a2 uh - v = 2 Qo i
G W “n w m dk dk
X
u)=i'wm

- s 2
= izme(L - cmcgm/v )

where cgm H dwm/dk (gpm) is the scalar group velocity. The result is

Bk =2 50 ) ok = cpe VN @) 4l o F I,
m
(3-21)
the sum carried out over both signs.
The numerical procedure is based on the observation that each term

2m of the above sum for the partial transform depends on x only in its

complex phase,
2 (%,k_,2) =T (k ,2) e ™ Iv, (3-22)
my? my? i

the source transform,

= 3a - vyt ' -
Tm(ky,z) - cmk(l cmcgm/v ) ¢m(z) ¢! (2), (3-23)
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can be computed and tabulated as a function of ky from the dispersion
data and eigenfunction amplitudes. A corresponding table of complex

phases

e—iwmA x/v

can be similarly prepared, after which each Em can be generated recur-

sively by repeated complex multiplications,
Y]
Cm(o ’ky.z) = T.‘n’

Em(x + Ax,ky,z) = cm(x,ky,z) e-iwmAx/v; (3-24)

at each step the sum

N
E(x,ky2) = Re Zcmcx.kym : (3-25)

briefly tabulated as a function of ky’ can be Fourier-transformed to

produce Z(X,y,2).

Field quantities other thaen displacement, such as scalar strain,
strain rate, and horizontal velocity, can be deduced from the simple
relations among the Fourier amplitudes derivable from the dynamical
equations (3-1 through 3-4):
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strain,

o
u
H
QDI
S
I
1]
&

strain rate, Et S
(3-26)
- wk' —
velocity, u, = ——-;f '
: k
~ ¥k
u_ = !
Y 2 :

For completeness, the appropriately modified formulas for the source

transforms are listed below:

Quantity In
: B 21 - eV 6,@) 81z
e L TR B MO MR
c, R R NS MO MR (3-27)
u %‘% k(L - cmcgm/vz)_l‘b;n(z) 3! (2 )
uy* -}-;X] —X- c:l(l - cmcgm/vz)-l () 6 (2)

*
The bracketed quantity [iky/k} is held outeide the sum in Equation 3-25.
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SECTION 4. WAKE-GENERATED WAVES

4,1 INERT MIXED WAKE

The mixing that occurs within the momentumless wake of a self~propelled

body tends to establish a more nearly uniform density in the wake than in
the surrounding stratified fluid., Internal waves are radiated as. the
mixed wake collapses slightly to bring the internal and external density
surfaces into level. For radiated components whose wavelength is longer
than the wake diameter, the effect of collapse can be reasonably well

represented by a time~dependent dieplacement quadrupole in the crossplane.

To incorporate wake radiation into the present transform algorithm,
one approach would be to model the wake collapse separately, either
analytically or numerically [7,8] and use the corresponding quadrupole

profiles as an additional source term.

A much simpler, though not yet validated, approach has been used
in the present version of XMODE, It uses a single parameter in the form
of an initlal quadrupole strength, and virtually generates the entire
quadrupole history in a self-consistent dynamical way as the radiation
field develops.

The inert mixed wake, in its simplest conception, is a tube of fluid
which, at a suitable short distance behind the self-propelled body, has

an anomalous density gradient within an approximately circular cross-
section, no mean flow perpendicular to the axis, and in which turbulent

stresses can be neglected in comparison to buoyant forces and inertia

in the equations of crossnlane flow. This last assumption means that
the dynamics of collapse are adequately described by the homogeneout
equations of flulid motion, both inside and outside the mixed regien.
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We assume that the only 2ffect of mixing is to redistribute density

and we define 2 displacement function to6 describe the redistribution,
Ap(x,¥,2-2 ),

such that if the mixing were abruptly terminated at position x, a fluid
particle on the streamline originally at level z would rise or £fall to the
ney equilibrium level z+A;. Thus, if the streamline is at the level z+z,
the particle experiences an acceleration due to buoyancy —NZ(C—AC). The
function Ay vanishes for x>o, changes rapidly in a mixing interval -X<x<o,
then remains independent of x for x<-X. The vertical momentum equation
(3-1) is accordingly modified to read

g+ %g— + N2 (2) (z-Ag) = 0, (4-1)

and following the derivation of Section 3 with the volume source s set to

zero, we get

2

2\.,
<%'2 +.-3->; + NV = NPvrAaT, (4=2)
3z

where again the steady solution obeys § = v2(a/ax)22;a For simplicity
we assume that the turbulent redistribution of density occurs rapidly
enough compared to the time scales {wmnl} to be approximated by impul-

sive change,
0, x>0
Ag = (4-3)

Ay, z - zo), x <0,

which gives the source term in (4-2) the form

2
Nz[n(:t) s a'<x>]
By )

32
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where n(x) is unity for x < 0 and zerc for x > 0. The two-dimensional

Fourier transform of this equation is

2

2~ 2 2 [ik

.a._g..;.kz;y_.- C:...y—-o vt + 1k X(k,Z"Z)

az2 2 2 k X y o
w w X

or,

2 2 2
) 2(N - Nk
S Yfre B e | e

In terms of the Green's Function in (3-12), the solution is

k2

- "y
= mszk,w(z’ zl)A(ky, z, - zo) dz1

1 wm2
= $_(z) Q (z ), (4-5)
1k Z m2 _ u)2 m m o
p S m
with
0,20 =f b, @ @ik z - 2.) da. (4-6)

Now for a range of wavenumbers ky and mode numbers m such that the spatial

scales of the plane-wave normal modes are muth larger than the wake radius R,
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kR<1,
y

mR < Z ,
a

the coefficients above are approximately

Q, ¢1;1(~20)N2(zo)f_[(zo - z)i(y,z - zo) dydz

o' 2 W (2,00, (4=1)

where the integral Q defines the wake quadrupole moment., This approxi-
mation assumes alsc that the ambient Valsala frequency is constant over

the wake height and that the wake is axisymmetric so that

ffa dxdy = 0.

The solution transform is thus

2 2
QN (z ) w
T#2) = 2 Y e 0@ | (8
X m [N "'wm

The partial inversion of Section 3.3 ylelds the crosstrack transform

%(x,ky,z) n-% QNZ(ZO) 25 Q-c

2.~1 —iw.x/v
] ! m
) c V7Y T o (2) ¢m(20) et R

gm m
(4-9)
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the sum again including both signs of iwm. This sum, representing the
raalated field, does not include the residue of the singularity at 'Rx = 0,

which merely reprcduces the impulsive density jump A7 inside the wake at x = C.

The source transforms 'I‘m generated by the quadrupole wake are

accordingly
Quantity E’.‘.‘.
N2 = e e v g (2) ol (z")
4 N, cgmcm,v ¢, (2) ¢ (2
€ -Qch)(l - cgmcm/vz)"]‘(#;l(z) or(2,)
2 2,~-1 1 1
€ ~QN_tw (1 = e c /v7) " ¢ (2) ¢/ (2)) (4-10)
c2
2 "m o, W
uy, QN —;,’: 4 - cgmcm/vz) ! ¢, (2) & (z )
N2 -i—lflji'-(l— W™ 80 2) § ()
Uy BRA J““'m €gi’n’ Y ) T o) 4, (2

4,2 SIZING THE QUADRUPOLE MOMENT

For a considerable range of horizontal and vertical wavenumber the
radiation emanating from a collapsing wake is seen to be determined by a

single constant, the kinematlc quadrupole moment

Q a.‘/]‘r(zo - 2) Ay, z - zo) dzdy. (4-11)
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The magnitude of this quantity depends both on the cross section of the
mixed wake arnd on the degree of mixing, as reflected by the density level
displacements A. There is probably no simple substitute for a complete
finite-~difference simulation of the turbulent dynamics of wake growth

and collapse in stratified media if accurate values of Q are essential.
However, certain bounding approximations can be made in anticipatien of
tliese more accurate simulations, and a quadrupole formula based on these

approximations has been included in the XMODE algorithm.

The estimate derived below is tased in an elementary way on the
dynamical picture of a growing, momentumless wake given by Ko [9], with
constants drawn from the measurements of Naudascher and Graa [10,11].

The procedure will be to assume that in the initial growth stage the density
is turbulently diffused like a passive variable, and that the consequent
growch in the quadrupole moment continues until the effects of stratifi-
cation intervene rather abruptly at about one~fourth of the local Vaisala
period. In Ko's account of non-stratified growth, the wake radius R

and turbulent velocity scale u' depend on time, or downtrack coordinate

%, according to

R le
(4-12)
with a Reynolds stress that is given by an eddy diffusivity
€ = Ku'R (4-13)

that is constant across the wake. In Gran's measurements this assumption
is verified, although the exponents in (4-1Z) are modified very slightly

by the effects of propeller-induced swirl, Gran's measurements also
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verify another assumption of Ko's, that the wake entrainment rate

R = vdR/dx is proportional to u',

R=ku'. (4-14)
To define the density distribution inside the growing wake we will neglect
the effect of swirl and we will suppose, following a Reynolds' analogy,

that the diffusion of the passive quantity p is governed by the eddy
diffusivity e, ‘

T 38 4. = -
u, v + Ve (eVp) 0 (4-15)

with a boundary condition that equates the normal flux of p across the

expanding wake perimeter at R:

0 api .
PR R T R (4-16)

where 3; 1s the mean longitudinal flow and the subscripts (i,0) mean
inside and outside the wake perimeter. The outside density profile is
assumed linear,

Py = po(zo) - 8(z - zo)- (4-17)

These equatlons have the remarkably simple solution
Di = po(zo) - a(z - ZO)’ (4"18)

as pointed out by Fernandez [12], since ¢ depends only on x but

apilax = 0 so that (4-15) is satisfied, while the boundary condition becomes
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R
~h\
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-, 357 e by QAL & N
sl R T

o e ——m———— o o e e me = e o ————— - b A . e s - - R R

¢ (Reosb) Kiu' + Xtu'R(acose) = B(Rcose)Klp'

where 0 1s the polar angle with z - z, = Rcost, the condition is everywhere

satisfied when

m(x1 + K) = BK, (4~19)

This argument suggests that the growing, non-radiating wake maintains a
constant internal density gradient whose value is smaller than the external
gradient by an amount that depends quite reasonably on the ratio of

entrainment constant Kl to eddy diffusilon constant K.

The displacements A in density surface levels inside the wake are

immediately given by

alz - zo) = B{(z - ZO) + 4],
or

=28 (. -
A== (2 - 7). (4-20)

The quantity (8 - a)/B = E is a measure of the mixing efficiency,

A = «E(z - zo)

(4~21)
KE

K1 + Ke

such that E tends to unity for Ke >> Kl and to zero for Kl >> Ke‘
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Tic kinematic quadrupole moment (4-11) is readily found to be

Q= =—E, (4-22)

which is seen to grow linearly with time in view of the xl/A-dependence
of R, The value for R taken from Gran's results for a streamlined

body-and-propeller model of radius Rb yields

RY 2 g% [0.213(x2;bx°)]

where R, = 1.19 Rb is the value at x = 12 Rb and Xy is a virtual origin
a short distance (2.6 Rb) in front of the propeller. Assuming that

quadrupole growth terminates abruptly after some fraction £ of the

TR

Vaisala period, when

o 22,

, - = g2mv
X-x = fN R
0
we get for the maximum quadrupcle
= 3 -
Q = 0.26 ER. v/N,. (4-23)

This is the formula implemented in the SOURCE module, with the mixing
efficiency E as a variable input parameter, and with the number f taken as
0.25, The appropriate value of E can be inferred from formula (4-21);
values of Kl and Ke taken by Ko from Naudascher's measurements, and
computed by Gran from his own data [13], yield roughly similar values

of E:
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Gran Naudascher
Ke 0.16 0.18
Kq 2.3 2,25
A 0.0€4 0.074

Both values of E are small enough to suggest that the actual mixing tha
occurs in a propeller wake may be dominated by gross convection due to
swirl., Gran remarks that a core of the wake extending out to = 0,25 R
remains in solid body retation and attains 0.8 revolutions after 20 body
diameters. If the portion out to 0.5 R were completely mixed, the
equivalent added mixing efficiency would be on the order of (0.5)4 =
0.0625,

4,3 TREATMENT OF HIGHER MODES

The approximation (4-7) for the mode-dependent quadrupole
coefficients (4-6) overemphasizes tha higher modes and higher wave-
numbers by treating the source like a point quadrupole singularly in
the crossplane. The noxmalized mode product ¢x'n¢1:n appearing in the source
transform formulas for strain, velocity, and strain rate is on the

average an increasing function of m, of order

5%

b

F N

1%
) 2 {2 -
¢m¢m v pqu)m dz = N

where one defines a vertical wavenumber 12 by

piﬁi dz =ﬁt'nz dz

and a mode~averaged Nz by
2 2 = 2,2, .
Nmfcpmdz-f%Ndz 1.
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‘5‘ One can easlly derive from the normal-mode equation (3-10) the relation
e b - 2 2 "‘2 2
ey = N (4-24)
NN
) i
- so that the wake-generated source transforms for strain,
; u’IZ
L T(wake) v QNoC (1 - )
om NZ
m

é;} E tend to grow without mode limit. The extra factor cik in the body-

%ﬁ : generated source transforms attenuates these functions at higher mode

féi - numbers. This behavior is evident in the body-dominated and wake~dominated
£ | cases l1llustrated in Figures 2-5 and 2-6 .

The actual wake excitation coefficients defined in equation (4-6)
will diminish with increasing k and m at a point where the scale of the
; i mode function becomes comparable to the maximum wake radius R. A simple
X form factor to simulate this effect qualitatively has teen included in

o3 the wake transform algorithm,

sg - 2 2 (4-25]
! 1+ 0.4 q, R

1
{
5 where q is a total wavenumber defined by
N
2 2 2 (4-26)

qm=k +pm’

and computed very simply from quantities on hand by formula (4-24) above,
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